(一)合成原料
自然界由mRNA編碼的氨基酸共有20種,只有這些氨基酸能夠作為蛋白質(zhì)生物合成的直接原料。某些蛋白質(zhì)分子還含有羥脯氨酸、羥賴氨酸、γ-羧基谷氨酸等,這些特殊氨基酸是在肽鏈合成后的加工修飾過程中形成的。
。ǘ)mRNA是合成蛋白質(zhì)的直接模板
原核細胞中每種mRNA分子常帶有多個功能相關(guān)蛋白質(zhì)的編碼信息,以一種多順反子的形式排列,在翻譯過程中可同時合成幾種蛋白質(zhì),而真核細胞中,每種mRNA一般只帶有一種蛋白質(zhì)編碼信息,是單順反子的形式。mRNA以它分子中的核苷酸排列順序攜帶從DNA傳遞來的遺傳信息,作為蛋白質(zhì)生物合成的直接模板,決定蛋白質(zhì)分子中的氨基酸排列順序。不同的蛋白質(zhì)有各自不同的mRNA,mRNA除含有編碼區(qū)外,兩端還有非編碼區(qū)。非編碼區(qū)對于mRNA的模板活性是必需的,特別是5’端非編碼區(qū)在蛋白質(zhì)合成中被認為是與核糖體結(jié)合的部位。見圖18-2。
圖18-2 (a)原核生物mRNA)為多順反子
(b)真核生物mRNA為單順反子
mRNA分子上以5'→3'方向,從AUG開始每三個連續(xù)的核苷酸組成一個密碼子,mRNA中的四種堿基可以組成64種密碼子。這些密碼不僅代表了20種氨基酸,還決定了翻譯過程的起始與終止位置。每種氨基酸至少有一種密碼子,最多的有6種密碼子。從對遺傳密碼性質(zhì)的推論到?jīng)Q定各個密碼子的含義,進而全部闡明遺傳密碼,是科學(xué)上最杰出的成就之一,科學(xué)家們設(shè)計了十分出色的遺傳學(xué)和生物化學(xué)實驗,于1966年編排出了遺傳密碼字典。見表18-1。
表18-1 氨基酸的密碼(code)
5’末端(第1位堿基) |
中間堿基(第二位堿基) |
3’末端(第三位堿基) | |||
U | C | A | G | ||
U | 苯丙(Pne)F | 絲(Ser)S | 酪(Tyr)Y | 半胱(Cys)C | U |
苯內(nèi)(Pne) | 絲(Ser) | 酪(Tyr) | 半胱(Cys) | C | |
亮(Leu)L | 絲(Ser) | 終止信號 | 終止信號 | A | |
亮(Leu) | 絲(Ser) | 終止信號 | 色(Trp) | G | |
C | 亮(Leu) | 脯(Pro)P | 組(His)H | 精(Arg)R | U |
亮(Leu) | 脯(Pro) | 組(His) | 精(Arg) | C | |
亮(Leu) | 脯(Pro) | 谷胺(Gin)Q | 精(Arg) | A | |
亮(Leu) | 脯(Pro) | 谷胺(Gin) | 精(Arg) | G | |
A | |||||
異亮(ILe)I | 蘇(Thr)T | 天胺(Asn)N | 絲(Ser)S | U | |
異亮(ILe) | 蘇(Thr) | 天胺(Asn) | 絲(Ser) | C | |
異亮(ILe) | 蘇(Thr) | 賴(Lys)K | 精(Arg)R | A | |
*蛋(Met)M(起動信號) | 蘇(Thr) | 賴(Lys) | 精(Arg) | G | |
G | |||||
纈(Val)V | 丙(Ala)A | 天(Asp)D | 甘(Gly)G | U | |
纈(Val) | 丙(Ala) | 天(Asp) | 甘(Gly) | C | |
纈(Val) | 丙(Ala) | 谷(Glu)E | 甘(Gly) | A | |
纈(Val) | 丙(Ala) | 谷(Glu) | 甘(Gly) | G |
*位于mRNA起動部位AUG為氨基酸合成肽鏈的起動信號。以哺乳動物為代表的真核生物,此密碼子代表蛋氨酸;以微生物為代表的原核生物則代表甲酰蛋氨酸。
遺傳密碼具有以下幾種特點:
(1)起始碼與終止碼(Initiation codon and termination codon):
密碼子AUG是起始密碼,代表合成肽鏈的第一個氨基酸的位置,它們位于mRNA5′末端,同時它也是蛋氨酸的密碼子,因此原核生物和真核生物多肽鏈合成的第一個氨基酸都是蛋氨酸,當然少數(shù)細菌中也用GUG做為起始碼。在真核生物CUG偶爾也用作起始蛋氨酸的密碼。密碼子UAA,UAG,UGA是肽鏈成的終止密碼,不代表任何氨基酸,它們單獨或共同存在于mRNA3’末端。因此翻譯是沿著mRNA分子5′→3′方向進行的。
。2)密碼無標點符號:兩個密碼子之間沒有任何核苷酸隔天,因此從起始碼AUG開始,三個堿基代有一個氨基酸,這就構(gòu)成了一個連續(xù)不斷的讀框,直至終止碼。如果在讀框中間插入或缺失一個堿基就會造成移碼突變,引起突變位點下游氨基排列的錯誤。醫(yī)學(xué)全在線www.med126.com
(3)密碼的簡并性(Degemeracy):
一種氨基酸有幾組密碼子,或者幾組密碼子代表一種氨基酸的現(xiàn)象稱為密碼子的簡并性,這種簡并性主要是由于密碼子的第三個堿基發(fā)生擺動現(xiàn)象形成的,也就是說密碼子的專一性主要由前兩個堿基決定,即使第三個堿基發(fā)生突變也能翻譯出正確的氨基酸,這對于保證物種的穩(wěn)定性有一定意義。如:GCU,GCC,GCA,GCG都代表丙氨酸。
。4)密碼的通用性:
大量的事實證明生命世界從低等到高等,都使用一套密碼,也就是說遺傳密碼在很長的進化時期中保持不變。因此這張密碼表是生物界通用的。然而,出乎人們預(yù)料的是,真核生物線粒體的密碼子有許多不同于通用密碼,例如人線粒體中,UGA不是終止碼,而是色氨酸的密碼子,AGA,AGG不是精氨酸的密碼子,而是終止密碼子,加上通用密碼中的UAA和UAG,線粒體中共有四組終止碼。內(nèi)部甲硫氨酸密碼子有兩個,即AUG和AUA;而起始甲硫氨酸密碼子有四組,即AUN。
密碼子結(jié)構(gòu)與氨基酸側(cè)鏈析性之間也有一定關(guān)系。①氨基酸側(cè)鏈極性性質(zhì)在多數(shù)情況下由斷面子的第二個堿基決定。第二個堿基為嘧啶(Y)時,氨基酸側(cè)鏈為非極性,第二個堿基為嘌呤時,氨基酸側(cè)鏈則有極性。②當?shù)谝粋堿基為U或A,第二個堿基為C,第三個堿基無特異性時,所決定的氨基酸側(cè)鏈為極性不帶電。③當?shù)谝粋堿基不是U,第二個堿基是P時,氨基酸側(cè)鏈則帶電。在此前提下,若是一個是C或A時,表示帶正電的氨基酸,第一、二個堿基分別是G、A時,此種氨革酸帶負電,但上述關(guān)系也有個別例外。
一種氨基酸由多種密碼子所編碼的事實使人想到:同一種氨基酸的一組密碼子的使用頻率是否相同?許多實驗證實,在原核生物和高等真核生物中同一組密碼子的使用頻率是不相同的。高頻密碼子多出現(xiàn)在那些表達量高的蛋白質(zhì)基因中,例如,核糖體蛋白質(zhì)基因,RecA蛋白質(zhì)基因等。表18-2。這種使用頻率與細胞內(nèi)一組tRNA中的不同tRNA含量有關(guān)。